Therapeutic dietary alterations: how a diverse gut

microbiota can reduce the risk of chronic illness

By: Julia Moretz

Sponsor: Dr. Christopher J. Osgood

The Gut Microbiota

100 trillion bacteria cells make up

the intestinal tract

- Gut microbiota of a person is determined by lifestyle habitats, exercise, diet, disease, and antibiotic use
- Contains species from each major life domain
 - which are bacteria, archaebacteria, and eukaryotes
- An unhealthy diet alone can have a tremendous negative effect on the gut microbiota

Bacteria Amounts and Types

Beneficial Bacterial Species

Pathogenic Bacterial Species

- Bacteroides thetaiotaomicron (B-theta)
- *Firmicutes* (gram positive)

- Salmonella typhi
- Bacillus anthracis

Bacteria	Basic features	Associated physiologic changes	Associated disease states	References
Bilidobacterium spp.	Gram positive obligate anaerobe branched, nonmotile	SCFA production, improve gut mucosal barrier; lower intestinal LPS levels	Reduced abundance in obesity	(166, 167)
Lactobacillus spp.	Gram positive facultative anaerobe rod-shaped	SCFA production; anti-inflammatory and anti-cancer activities	Attenuate IBD	[168, 169]
Bacteroides spp.	Gram negative obligate anaerobe rod-shaped, variable motility	Activate CD4 + T cells	Increased abundance in 18D	[170-173]
Alistipes spp.	Gram negative obligate anaerobe rod-shaped, bile-resistant and pigment-producing*		Reported in tissue from acute appen- dicitis and perirectal and brain abscesses	[174]
Blophia spp.	Gram negative obligate anaerobe urease-positive, bile resistant, catalase-positive	Promote pro-inflammatory T _{at} 1 immunity	E wadsworthia observed in colitis, perforated and gangrenous appendicitis, liver and soft tissue abscesses, cholecystitis, FG, empy- ema, osteomyelitis, and HS	[175, 176]
Clostridium spp.	Gram politive obligate anaerobe rod-shaped, spore-forming	Promote generation of $T_{\rm H} 17$ cells	Several spp. are pathogenic causing tetanus, botulism, gas gangrene, or pseudomembranous colitis.	[177, 178]
Rosebunia spp.	Gram variable obligate anaerobe curved rod-shaped; motile	SCFA production	Reduced abundance in IBD	[179]
Eubacterium spp.	Gram positive obligate anaerobe rod-shaped	SCFA production; form beneficial phenolic acids	Reduced abundance in IBD	(180, 181)
Enterococcus spp.	Gram positive facultative anaerobe cocci		Several spp. are pathogenic causing UTI, endocarditis, or bacteremia	[182]
Faecalibacterium prausnitali	Gram positive obligate anaerobe rod-shaped; nonmotile	SCFA production; anti-inflammatory effects	Reduced abundance in IBD and obesity	[183, 184]
Akkermanula mucin- iphila	Gram negative obligate anaerobe oval-shaped; nonimotile	Anti-inflammatory effects	Reduced abundance in IBD, obesity, and psoriatic arthritis	[53, 133, 185]
Escherichia coli	Gram negative facultative anaer- obe rod-shaped	TLR-activation	Increased abundance in IBD gastroen- teritis, UTI, and meningitis	[186-188]
Helicobacter pylori	Gram negative microaerophilic helix-shaped; motile		Gastritis; ulcers; MALT cancers	[189, 190]
Streptococcus spp.	Gram positive facultative anaerobe cocci		Some spp. are pathogenic caus- ing meningits, pneumonia, and endocarditis	[191]

spp species, SCFA short chain fatty acid, LPS lipopolysaccharide, IBD inflammatory bowel disease, T_{in}T helper, FG Fournier's gangrene, HS hidradenitis suppurativa, UTI urinary tract infection(s), TLR toil-like receptor, MALT mucosa-associated lymphoid tissue

* A putredinis does not produce pigment and is susceptible to bile

(Singh K., et al. 2017)

Bacteria Amounts and Types

Symbiotic Human-bacteria Relationship

• Allows the body to be able to adapt

to sudden dietary changes

• Maximize the amount of energy

obtained from a person's diet

- Symbiotic relationship between humans and bacteria due to an antibacterial lectin secreted by the epithelial surface which is known as *RegIIIy*
- Other animals that have positive
 symbiotic relationships with bacteria:
 termites, the Gypsy moth, the squid.

(Rajpal and Brown 2013)

Gut Microbiota Functions

- Major implication of digesting food,
 but it also plays a significant role in the development of the immune system and communicating with the brain
- Stimulation of naive T cells into T reg cells which suppresses inflammation

Metabolites	Related bacteria	Biological functions
SCFA	Clostridial clusters IV and XIVa, Eubacterium, Roseburia, Faecalibacterium, Coprococcus	Cholesterol synthesis, implicated in T2D, obesity, insulin resistance, colorectal cancer
Bile acids	Lactobacillus, Bifidobacteria, Enterobacter, Bacteroides, Clostridium	Absorb dietary fats, intestinal barrier function, signal systemic endocrine functions, energy homeostasis
Choline metabolites	Faecalibacterium prausnitzii, Bifidobacterium	Lipid metabolism and glucose homeostasis, involved in NAFLD, obesity, diabetes & CV disease
Phenolic, benzoyl and phenyl derivatives	Clostridium difficile, F. prausnitzii, Bifidobacterium, Subdoligranulum	Detox of xenobiotics, urinary metabolites
Indole derivatives	Clostridium sporogenes, Escherichia coli	Modulate pro-inflammatory genes, strengthen epithelial cell barrier, implicated in brain-GI axis
Vitamins	Bifidobacterium	Endogenous sources of vitamins, potential epigenetics
Polyamines	Campylobacter jejuni, Clostridium saccharolyticum	Exert genotoxic effects, potential anti-inflammatory & anti-tumor effects
Lipids	Bifidobacterium, Roseburia, Lactobacillus, Clostridium, Proteobacteria	LPS induction, intestinal permeability, brain-GI-liver axis & glucose homeostasis
Others: lactate, endocannabinoids, etc.	Bacteroides, Pseudobutyrivibrio, Ruminococcus, Faecalibacterium, Lactobacillus, etc.	Various pathways including endocannabinoid system

Germ-free Mice Research

- Raised in these germ-free conditions
- Do not develop a gut microbiota

- Germ-free mice that were compared to regular mice had to eat 20% more calories in order to maintain the same weight as normal mice
- Studies with germ-free animals has also demonstrated that bacteria is essential for immune cell recruitment

How the Gut Microbiota Guides Immune Cell Development

- Gut microbiota has the ability to develop immunity to pathogens
- Study indicates that the gut microbiota helps to inhibit pathogen colonization
- Germ-free mice have a greatly reduced ability to form an immune response to *Toxoplasma gondii*

- Microbiota diversity and density is greatly reduced when a person is being treated with antibiotics
- Patients need assistance to help reestablish gut microbiota balance after antibiotic consumption

Fecal Microbiota Transplantation

- Consumptions of antibiotics such as Vancomycin can potentially cause an overgrowth of *Clostridium difficile*
- Fecal sample administered into the ill patient endoscopically
- In a scientific trial of 516 patients, fecal microbial transplantation produced an 85% success rate compared to the 20% success rate of antibiotic treatment

Food Types in Relation to Bacteria Composition in the Gut Microbiota

- Non-digestible carbohydrates such as fiber are considered to be "microbiota accessible carbohydrates (MACs), which allow microbes to supply their host with energy
- Soybeans, barley, and raw oats are prebiotic foods, and have shown to increase bacterial variety and density

- Fermented foods, which contain lactic acid bacteria, such as tempeh (fermented soybeans), have also shown to benefit intestinal health and are also known as probiotics
- A research study that was executed on 60 overweight adults were provided probiotic supplementation, and it resulted in an increased number in beneficial bacteria such as Bifidobacteria

Effects of Specific Diets on the Gut Microbiota

Consuming red meat promotes a certain composition within the Plant Protein Gut Barrier gut microbiota that is associated Treas idolocterium Inflammation Lactobacilius Bacteroides with increased levels of 1Clostridium perfringens trimethylamine-N-oxide **Animal Protein** (TMAO) TMAC More studies need to be **SCEA** ninococcus fidobacterium 18D executed in order to gain more information concerning the effects of a vegan or vegetarian diet on the gut microbiota

Chronic Illnesses in Relation to Gut microbiota

- Correlation between the composition of the gut microbiota and different diseases such as type 2 diabetes, obesity, atherosclerosis, inflammatory bowel disease, atopic dermatitis, and autoimmune arthritis
- The gut microbiota of patients who are obese tend to have a higher concentration of *Firmicutes* bacteria within their intestines

- Mood disorders have also been demonstrated as a result of poor gut microbiota health.
- A distressed spatial relationship between the intestinal epithelial surface and gut microbiota correlates with IBD

Therapeutic Dietary Alterations to Increase Beneficial Bacteria Composition

- US National Institutes of Health (NIH) Human Microbiome Project was established in 2007
- EU MetaHIT Consortium; initiated in 2008
- Both developed to collect data concerning the microbiota of thousands of people from different backgrounds and different ages
- There needs to be more focus on restoration of the gut microbiota after consummation of antibiotics.
- Developments for antibiotics with specific bacterial targets will cause less distress on the gut microbiota balance.

Conclusions

- Healthy dietary changes are crucial in preventing chronic diseases
- The strong correlation between a dysbiosis of the gut microbiota and chronic illness is another reason why the gut microbiota needs to be considered more in every aspect when attempting to prevent or treat any chronic disease

References

De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J., Massart, S., . . . Hartl, D. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences of the United States of America, 107(33), 14691-14696.

Goyal, M., Venkatesh, S., Milbrandt, J., Gordon, J., & Raichle, M. (2015). Feeding the brain and nurturing the mind: Linking nutrition and the gut microbiota to brain development. Proceedings of the National Academy of Sciences of the United States of America,112(46), 14105-14112.

Heijtz, R., Wang, S., Anuar, F., Qian, Y., Björkholm, B., Samuelsson, A., . . . Zychlinsky, A. (2011). Normal gut microbiota modulates brain development and behavior. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 3047-3052.

Hooper, L. (November 2015) Mammalian Gut Microbiota: Part 1; Mammals and their symbiotic gut microbes. iBiology. Retrieved from https://www.ibiology.org/immunology/gut-microbiota/

Hooper, L. (November 2015) Mammalian Gut Microbiota: Part 2; Maintaining the Host-microbe symbiosis. iBiology. Retrieved from https://www.ibiology.org/immunology/gut-microbiota/

References

Mukherjee, S. and Hooper, L.V. (2015) Antimicrobial defense of the intestine. Immunity 42, 28-39.

Rajpal, D., & Brown, J. (2013). Modulating the human gut microbiome as an emerging therapeutic paradigm. Science Progress (1933-), 96(3), 224-236.

Singh K. R., Chang H., Yan D., et al. (2017) Influence of diet on gut microbiome and implications for human health. Journal of Translational Medicine. 15:73.

Spector, T., & Knight, R. (2015). Faecal transplants. BMJ: British Medical Journal, 351.

Vaishnava, S., Yamamoto, M., Severson, K.M., Ruhn, K.A., Yu, X., Koren, O., Ley, R., Wakeland, E.K., and Hooper, L.V. (2011) The antibacterial lectin RegIII_γ promotes the spatial segregation of microbiota and host in the intestine. Science 334, 255-258.

Nicholson, J., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., & Pettersson, S. (2012). Host-Gut Microbiota Metabolic Interactions. Science, 336(6086), 1262-1267.